LambangTunas Kelapa, Sejarah Lambang Gerakan Pramuka Indonesia. Siapa pencetus lambang tunas kelapa sudah diketahui, yaitu Soenardjo Atmodipuro. Selanjutnya mari membahas tentang lambang tunas Gabung KomunitasYuk gabung komunitas {{forum_name}} dulu supaya bisa kasih cendol, komentar dan hal seru lainnya. Kaskus Addict Posts 2,236 waw sangat intelek gan 21-05-2015 0901 Kaskus Addict Posts 1,829 bener gan kata ente 21-05-2015 0903 nice thread gan.. 21-05-2015 0903 1 / 0 = tak terdefinisi tak dikenali, error, diluar sistem 0 / 1 = melarat 21-05-2015 0904 Kaskus Addict Posts 1,565 Sepertinya beda pembahasan antara tak hingga infinity dan tak terdefinisikan undefined gan. 21-05-2015 0906 Aktivis Kaskus Posts 693 sepertinya masih banyak yg salah kaprah ya.... 21-05-2015 0908 Kaskus Addict Posts 1,625 IMHO, hanya permasalahan kosakata bahasa saja kok 21-05-2015 0910 Kaskus Addict Posts 1,777 ane puyeng gan dari dulu sama matematik 21-05-2015 0911 Kaskus Addict Posts 3,083 ane pas SMP 1 di bagi 0 itu ga terdefinisi, di ajarin sama guru2 gan, klo yg tak terhingga mah ga tau thu kata dari mana 21-05-2015 0914 Kaskus Addict Posts 3,157 Logikanya apel kan ga bisa di bagi karena ga ada 0. Hasilnya akan tetap segitu, jadi bukan tak terdefinisi. Tapi bukan tak hingga karena hasilnya ga akan berubah. Haha.. Ane bodo matematika sejak dulu kala 21-05-2015 0914 klu menurut gw pengertian tak terhingga itu byknya blg yg kita tidak tahu dalam batas tertentu...mis antara 0 sampai 1..itu defenisinya tak terhingga bukan tak terdefenisi...krn 0 smpi 1 klu ditentukan bisa dgn istilah limit...menuju tak terhingga..jdi pendekatannya ada..klu tak defenisi tak pengertiannya bilangan yg tidak bisa di batasi alias inttervalnya tidak ada...sehingga pendekatan limit jga tidak bisa d defenisikan...jdi kesimpulan 1 di bagi 0 adalh tak terdefenisi krn batasan blg dr interval tdk d defenisikan..pelajaran ini bisa di buktikan dgn aljabar n math pendeketan limit... 21-05-2015 0915 Diubah oleh event84 21-05-2015 0917 Kaskus Addict Posts 1,173 Gan, di trit sebelah dia bilang 1 1 kan 1 1 0,1 = 10 1 0,01= 100 1 0,001 = 1000 hal ini ga bisa pake analogi agan yg apel itu, krn ga ada yg namanya 0,1 orang, 0,001 orang. lanjut.. 1 0,0001 = 1 0,000001 = 1 0,000000001 = semakin kecil bilangan pembagi/penyebut/apalah itu, hasilnya akan semakin besar kan. nah, coba bayangin kalo 1 dibagi berapa hasilnya? notasi tak hingga bukan bilangan tp konsep, tp knp banyak orang bahkan guru dan dosen menggunakan notasi tak hingga dalam sebuah perhitungan dan menyebutkan bahwa tak hingga itu sebuah bilangan/jumlah? ane masih bingung. edit oiya, ini dari kalkulator sih. Spoiler for infinity 21-05-2015 0919 Kaskus Addict Posts 1,868 QuoteOriginal Posted By pengecualian► Threadnya jadi HT gan Sayang HT nya gak kualitas. Cz isi nya ada yg salah. Dan cerita nya lucu. 21-05-2015 0922 Kaskus Addict Posts 2,059 ane gak terlalu ngertii gan klo soal soal matematika gan 21-05-2015 0925 KASKUS Addict Posts 2,543 simple pertanyaan nyatapi agak bingungin juga ya 21-05-2015 0926 Aktivis Kaskus Posts 532 Infinity symbol ∞ is an abstract concept describing something without any limit and is relevant in a number of fields, predominantly mathematics and physics. In mathematics, "infinity" is often treated as if it were a number it counts or measures things "an infinite number of terms" but it is not the same sort of number as natural or real numbers -wikipedia 21-05-2015 0927 Kaskus Addict Posts 1,531 Kaskus Addict Posts 1,898 "tak terdefinisi" berarti tidak dapat diartikan ya gan 21-05-2015 0932 Kaskus Addict Posts 1,868 QuoteOriginal Posted By pengecualian► Threadnya jadi HT gan Tp sgt di sayang kan isi materi thread nya ada yg keliru dan cerita nya lucu 21-05-2015 0933 Setau ane tak hingga itu bisa muncul kalo ada limit suatu bilangan dibagi nol. Jadi kalo dari 1 apel dibagi menjadi 0 bagian apel itu harus dipotong sedimikian rupa sampe mendekati bentuk atom mungkin nah kan jumlahnya sangat banyak makanya di konsep limit bisa didefinisikan dengan tak hingga, dan untuk pembagian 1/0 tanpa limit ini bukan tak tedefinisi tapi fungsinya bukan termasuk daerah definisi, fungsi yang ga masuk daerah definisi bukan berarti tak terdefinisi kan?. Sedangkan tak terdefinisi lebih mengacu sama 0/0 atau ~/~ simpelnya Ketika 0*9=0 itu punya nilai yang sama dengan 0*8=0 berart 0/0 bisa aja bernilai 0,1,-1,9,100 dll kita ga bisa definisiin bentuk aslinya berapa. Cmiiw 21-05-2015 0933 LimitTak Hingga. Limit tak hingga ialah kajian yang tepat dalam mengetahui kecendrungan suatu fungsi apabila nilai variabelnya dibuat semakin besar. Apabila di katakan, x menuju tak hingga, ditulis x → ∞, artinya nilai x semakin besar atau bertambah besar tanpa batas. Diberikan sebuah fungsi f (x) = 1/x 2. Berikut pengamatan nilai fungsi f
alam ilmu matematika, dapat kita jumpai berbagai macam simbol-simbol matematika. Simbol-simbol tersebut diperkenalkan oleh para matematikawan. Karena banyaknya simbol-simbol dalam matematika, sering kali pengertian simbol itu tidak dijelaskan dan dianggap maknanya telah diketahui. Hal ini kadang menyulitkan bagi mereka yang awam dengan simbol-simbol dalam matematika. Maka dari itu, adanya daftar yang diorganisir menurut jenis simbolnya dimaksudkan untuk mempermudah pencarian simbol-simbol yang kurang dikenal dari penampakannya. Dari sekian banyak simbol dalam matematika dengan bentukyang sangat unik, penulis hanya akan membahas secara mendalam salah satu simbol saja yaitu simbol tak hingga infinity. Namun, sebelum membahas secara mendalam mengenai simbol tak hingga, kita akan membahas tentang pemahaman bentuk simbol tak hingga terlebih dahulu. Ternyata sebagian orang dari kita memiliki perbedaan dalam pemahaman simbol tak hingga, ada yang beranggapan bahwa simbol tak hingga itu adalah ∞, tapi ada juga yang beranggapan lain bahwa simbol tak hingga yaitu ~. Untuk meluruskan perbedaan pemahaman mengenai simbol tak hingga itu, maka penulis akan memaparkan sebenarnya simbol tak hingga yang tepat itu yang mana, apakah ∞ atau ~?. Sesungguhnya simbol ~ bukanlah simbol tak hingga dari keterhinggaan, melainkan simbol tersebut merupakan sebutan atau bacaan lain dari nama distribusi probabilitas dapat dibaca juga tak hingga yang termasuk kategori statistika dalam daftar terorganisir menurut jenis simbol matematika. Mungkin, dari situlah ada yang beranggapan kalau simbol tak hingga adalah ~ karena bacaannya yang sama. Atau kemungkinan lainnya, pertama kali mengetahui bentuk simbol tak hingga seperti ini ~, maka yang mereka tau untuk simbol tak hingga adalah ~.Jika kita lihat dalam daftar yang telah terorgaanisir menurut jenis simbol, maka kita akan mengetahui bahwa simbol tak hinggaatau keterhinggaan itu yang lebih tepatnya adalah ∞. Gambar 1. Simbol Infinity Jika kita berbicara tentang definisi, Definisi dari simbol tak hingga Infinity adalah sebuah konsep abstrak yang menggambarkan sesuatu yang tanpa batas dan relevan dalam sejumlah bidang, terutama matematika dan hingga Infinity itu dalam daftar simbol matematika yang telah diorganisir menurut jenis simbolnya termasuk ke dalam daftar simbol bukan huruf yang lain dan merupakan kategori ada beberapa orang yang berpendapat bahwa tak hingga bukan benar-benar bilangan. Tak berlaku seperti bilangan yang biasa kita gunakan. Bilangan yang kita gunakan seluruhnya memiliki akhir, tetapi tak hingga tidak memilikinya. Beberapa orang juga ada yang berpendapat bahwa tak hingga ialah tiap bilangan kecuali 0 yang dibagi oleh 0 sehingga bernilai tak hingga. Dalam wikipedia, bahwatakhingga atau ananta yang sering ditulis ∞, ialah bilangan yang lebih besar dari pada tiap-tiap yang kemungkinan dapat dibayangkan. Kemudian, ada juga yang mendefinisikan yang lain tentang tak hingga dalam blog wordpress-nya by Aria Turn bahwa Tak hingga atau infinity yang dinotasikan ∞ diambil dari kata latin “infinitas” yang artinya tak terbatas/ unbounded adalah sebuah konsep BUKAN bilangan atau angka seperti yang disangka banyak orang. Dalam matematika ∞ adalah “sesuatu” yang lebih besar dari bilangan manapun tetapi sesuatu itu BUKAN bilangan, dengan kata lain tidak ada bilangan yang lebih besar dari ∞. Karena ∞ bukan sebuah bilangan maka ∞ tidak ganjil, tidak genap dan tidak prima. Dalam kamus matematika Carol Vorderman, definisi tak hingga adalah tanpa batas-batas ukuran atau jumlah, tidak terbatas, tidak ada akhirnya. Jika penulis berpendapat mengenai definisi tak hingga, pendapat penulis tidak jauh berbeda dengan definisi pada umumnya, bahwa tak hingga itu diguakan untuk bilangan yang tak dapat terhitung besarnya atau tak terbatas dan bilangan itu bukan bilangan real, maka dari itu digunakanlah simbol tak hingga ∞ sebagai tanda nilai yang tak terhitung besarnya. Setelah membahas mengenai definisi dari tak hingga, selanjutnya mari kita mulai dengan sejarah simbol Tak Hingga Infinity, yang dibagi kedalam beberapa masa sebagai berikut Awal Yunani, tercatat bahwa ide infinity paling awal berasal dari Anaximander, seorang filsuf dari Yunani pra-Socrates yang tinggal di Miletus. Dia menggunakan kata “apeiron” yang berarti tak berbatas atau tak terbatas. Namun, awal pembuktian infinity matematika oleh Zeno dari Elea C 490 SM - C 430 SM, Seorang filsuf Yunani pra-Sokrates dari selatan Italia dan anggota Eleatic Sekolah yang didirikan oleh Parmenides. Aristoteles memanggilnya penemu dialektika. Dia terkenal karena paradoksnya yaitu paradoks Achilles dan Kura-kura. Paradoks ini terkenal karena orang Yunani gagal menjelaskan paradoks ini. Walau sekarang terkesan tidak terlalu sulit, tapi butuh waktu ribuan tahun sebelum matematikawan dapat menjelaskannya. Paradoks Achilles dan kura-kura kira-kira seperti ini Gambar 2. Achilles dan kura-kura Zeno menganalogikan paradoks ini dengan membayangkan lomba lari Achilles dan seekor kura-kura. Keduanya dianggap lari dengan kecepatan konstan dan kura-kura sudah tentu jauh lebih lambat. Untuk itu, si kura-kura diberi keuntungan dengan start awal di depan, katakanlah 10 meter. Ketika lomba sudah dimulai, Achilles akan mencapai titik 10 m titik di mana kura-kura mula-mula. Tetapi si kura ini juga pasti sudah melangkah maju, jauh lebih lambat memang, katakanlah dia baru melangkah 1 meter. Beberapa saat kemudian Achilles berada di titik 11m, tapi si kura lagi-lagi sudah melangkah maju 0,1 m. Demikian seterusnya, setiap kali Achilles berada pada titik di mana kura-kura sebelumnya berada, si kura-kura sudah melangkah lebih maju. Artinya, Achilles, secepat apa pun dia berlari tidak akan bisa mendahului kura-kura. Awal India, teks matematika india Surya Prajnapti C abad SM 3-4 mengklasifikasikan semua bilangan menjadi tiga set, yaitu dapat dihitung, tak terhitung, dan tak terbatas. Masing-masing selanjutnya dibagi menjadi tiga perintah 1. Dapat dihitung terendah, menengah, dan tertinggi. 2. Tak terhitung hampir tak terhitung, benar-benar tak terhitung, dan tak terhitung banyaknya. 3. Tak terbatas hampir tak terbatas, yang tidak terbatas, tak terhingga/ tak terbatas. Dari klasifikasi bilangan dalam teks matematika india Surya Prajnapti, kita ketahui terdapat kata dapat terhitung, tak terhitung, dan tak terbatas. Agar kita paham tentang kata-kata seperti itu, Penulis akan mencoba menjelaskan yang berkaitan dengan klasifikasi bilangan tersebut sehingga kita mengetahui perbedaannya. Dalam dunia matematika terutama dalam materi himpunan, bahwa 1. Terhitung/ terbilang adalah segala anggota-anggotanya angkanya dapat ditunjukkan satu persatu. Contoh A=Himpunan bilangan asli kurang dari 3. Ditulis A={1,2,3} 2. Tak terhitung adalah segala anggota-anggotanya angka tidak dapat ditunjukkan satu persatu. Contoh B= Himpunan bilangan cacah. Ditulis B={0,1,2,3,...} 3. Terbatas adalah segala yang memiliki batasdan atau dapat dihitung. Contoh 4. Tak terbatas adalah segala yang tidak memiliki batas atau tidak dapat dihitung. 5. Terhingga adalah segala angka yang terhingga atau dapat dihitung. Contoh E= Himpunan bilangan bulat 0 sampai 5. Ditulis E= { 0,1,2,3,4,5} 6. Tak terhingga adalah segala angka yang tak terhingga atau tidak dapat dihitung. Contoh F= Himpunan bilangan genap. Ditulis F= { 2,4,6,8,...} Abad ke-17, matematikawan dari Eropa mulai menggunakan nomor yang tak terbatas secara sistematis. Gambar 3. John Wallis John Wallis pertama kali yang menggunakan notasi ∞ untuk nomor tersebut. Lebih jauh Wallis menulis . Pada awal abad ketujuh belas juga para ahli matematika telah menangani deret tak hingga di antaranya adalah Rene Descartes 1596-1650. Gambar 4. Rene Descartes Descartes telah memecahkan kebuntuan beberapa abad, yakni dapat menjelaskan paradoks Zeno secara memuaskan dengan menggunakan limit jumlah deret tak hingga. Paradoks ini diselesaikan secara matematika. Dalam paradoks Zeno, dianalogikan Achilles dan kura-kura lari. Achilles mencapai posisi awal kura-kura yaitu 10 meter. Kemudian Achilles mencapai posisi kedua kura-kura dalam 1 meter. Demikian pula Achilles mencapai posisi ketiga kura-kura dalam 0,1 meter dan seterusnya ... Jarakyang diperlukan Achilles untuk menyusul kura-kura akan membentuk Deret Geometri tak berhingga 10 + 1 + 0,1 + 0,01 + .... dengan ratio perbandingan antara dua suku yang berurutan r = 0,1. Dan jumlah suku-suku yang banyaknya tak hingga pada deret tersebut adalah BERHINGGA, karena deret diatas adalah deret yang konvergen, bisa dicari dengan a = suku pertama r = adalah rasio Sehingga jumlah total deret untuk memecahkan paradox zeno adalah Jadi Kura-kura akan tersusul oleh Achilles hanya dalam waktu 10/0,9 detik. Dan demikianlah kita temukan juga antinomi dari Immanuel Kant. Gambar 5. Immanuel Kant Gambar 6. Santo Agustinus Kalau ketakhinggaan St. Agustinus menyangkut “tak hingga sesungguhnya” dan “kemampuan tak hingga” yang lebih banyak bersifat keagamaan maka ketakhinggaan yang dikemukakan Kant menyangkut ruang, waktu, serbaterus, diskrit, sebab-akibat, dan kebetulan. Dalam antinominya, Kant mempertentangkan tak hingga dan terhingga dalam masalah ruang dan waktu. Mengemukakan dalam bentuk antinomi tersebut ternyata Kant mempertahankan kedua-duanya yakni Kant menyatakan bahwa ruang dan waktu terhingga dan juga tak hingga. Tentunya hal ini berkaitan dengan alam pikiran Kant sendiri yang yakin bahwa ada “sesuatu di dalam sesuatu itu sendiri” yang terletak “di luar” pemikiran tetapi merupakan kenyataan yang terpisah. Alasan untuk mengatakan dunia terhingga kata Kant akan sama kuat dengan alasan untuk mengatakan dunia tak hingga. Oleh karena itu, antinomi Kant ikut menggolongkan terhingga dan tak hingga demikian sebagai “sesuatu di dalam sesuatu itu sendiri” dan terletak “di luar” pemikiran manusia. Dengan pandangan Kant ini maka ketakhinggaan yang belum dibahas dalam matematika pada waktu itu tidak juga menemukan pemecahan secara filsafat. Ketakhinggaan merupakan sesuatu yang belum dipahami orang. Bahasan dari definisi dan sejarah dari simbol tak hingga menjadikan kita bertambahnya wawasan mengenai simbol tersebut. Namun, apakah kita tau asal mula bentuk simbol tersebut? Mari kita bahas mengenai asal mula bentuk simbol tak hingga ini. Untuk simbol tak terhingga ∞ diperkirakan mungkin berasal dari varian pada Ouroboros klasik. Gambar 7. Ouroboros Dengan ular melingkar sekali sebelum makan ekornya sendiri, dan penggambaran seperti dari loop ganda sebagai ular makan ekornya sendiri yang umum hari ini di fantasy art dan sastra fantasi, meskipun dugaan lain bisa juga. Ouroboros ini merupakan pembaharuan siklus abadi hidup dan tak terbatas, konsep keabadian dan kembali abadi, dan merupakan siklus kehidupan, kematian dan kelahiran kembali, yang mengarah ke keabadian, seperti dalam phoenix. Mungkin dari kata tak terbatas lah yang menjadikan dugaan bahwa simbol tak hingga berasal dari varian ouroboros klasik. Ternyata simbol tak terhinggamemiliki kegunaan dalam beberapa cabang ilmu matematika antara lain yaitu 1. Analisis nyata/ Analisis Real. Simbol ∞ digunakan untuk menunjukkan batas tak terbatasberarti bahwa x tumbuh tanpa terikat, danberarti nilai x adalah menurun tanpa terikat. 2. Analisis Kompleks. Simbol ∞ untuk menunjukkan limit yang tak bahwa besarnya x, x melampaui nilai yang diberikan. Jadi, dapat disimpulkan bahwa sejarah takhingga dimulai pada awal yunani, awal pembuktian infinity matematika oleh Zeno dengan paradox miliknya yaitu Paradoks Achilles dan kura-kura. Dilanjutkan keawal India, dalam teks matematika India Suya Prajnapti diklasifikasikan bilangan kedalam tiga set, yaitu dapat dihitung, tak terhitung dan tak terbatas. Dan pada abad 17, Descrates dapat menjelaskan paradoks Zeno secara memuaskan dengan menggunakan limit jumlah deret tak hingga. Bentuk yang tepat untuk keterhinggaan adalah ∞ bukanlah ~. Karena simbol ~ dibaca tak hingga dalam statistika probabilitas. Untuk istilah bilangan, bahwa yang dinamakan terhitung/ terbilang adalah angka yang dapat ditunjukkan satu persatu. Tak terhitung adalah angka tidak dapat ditunjukkan satu persatu. Terbatas adalah segala yang memiliki batas atau dapat dihitung. Tak terbatas adalah segala yang tidak memiliki batas atau tidak dapat dihitung. Terhingga adalah segala angka yang terhingga atau dapat dihitung. Tak terhingga adalah segala angka yang tak terhingga atau tidak dapat dihitung. Penggunaan simbol tak hingga antara lain dalam analisis nyata/ analisis real, dan analisis kompleks. Untuk cabang ilmu matematika analisis real/ analisi nyata simbol tak hingga digunakan untuk menunjukkan batas tak terbatas. Dalam analisis kompleks digunakan untuk menunjukkan limit tak terbatas.
matematika banyak sekali istilah yang perlu kita pahami. Salah satu masalah yang muncul, ketika kita menemukan kasus pembagian suatu bilangan dengan Hingga dan Tak Tentu [masalah pembagian dengan 0]" itemprop="url">
Dalam matematika banyak sekali istilah yang perlu kita pahami. Salah satu masalah yang muncul, ketika kita menemukan kasus pembagian suatu bilangan dengan nol, seperti beberapa pertanyaan berikut yang mungkin anda sendiri pernah mempertanyakannya, "Apakah hasil dari $\frac{1}{0}$ adalah tak terdefinisi atau tak hingga?", "Bagaimana dengan $\frac{0}{0}$?", "Berapa nilai dari $tan{\frac{\pi}{2}}$ ?", "Apakah $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}=\infty$?" dan banyak pertanyaan lain terkait pembagian nol. Baiklah, mari kita bahas beberapa istilah berikut yaitu Tak terdefinisi, tak hingga, dan tak tentu Sesuai namanya "tak terdefinisi" adalah sesuatu yang tidak😈 bisa kita definisikan. Dalam matematika, banyak hal yang tidak😈 terdefinisi undefined beberapa contoh diantaranya misalnya dalam geometri, kita sering mendengar dengan istilah "titik", namun tidak😈 ada definisi yang menjelaskan apa itu titik. Contoh lain di luar geometri misalnya suatu fungsi $\displaystyle fx=\sqrt{x}$ tidak😈 terdefinisi untuk $x$ negatif dengan $x$ anggota bilangan real dan $fx\in$ Real. Dalam aritmetika, ketika kita membagi suatu bilangan dengan nol, maka hasilnya adalah tidak😈 terdefinisi bukanlah tak hingga. Perhatikan ilustrasi berikut Kita tahu bahwa pembagian adalah invers balikan dari perkalian, misal $\displaystyle\frac{a}{b}=c$ maka dapat kita nyatakan $\displaystyle c\times b=a$. Contoh, $\displaystyle\frac{18}{3}=6$ dapat kita nyatakan $6 \times 3=18$ Namun, bagaimana dengan $\displaystyle\frac{18}{0}=x$, maka $x\times 0=18$, apakah ada nilai $x$ yang memenuhi? tentu saja jawabannya tidak. Oleh sebab itu, berapapun bilangannnya selain nol jika dibagi dengan 0, maka tidak😈 bisa didefinisikan tak terdefinisi. Masalah pembagian dengan 0 ini, saya sarankan anda membaca salah satu artikel di mengenai division by zero atau klik disini Istilah "Tak Hingga" atau "Tak Berhingga" atau "Tak Terhingga" merupakan istilah yang kita gunakan untuk menunjukkan suatu nilai yang amat sangat besar positif tak hingga atau suatu nilai yang amat sangat kecil negatif tak hingga, meskipun demikian "tak hingga" bukanlah suatu bilangan baik real maupun kompleks. Tak hingga disimbolkan dengan $\displaystyle\infty$. Dalam kalkulus, tak hingga $\displaystyle\infty$ dapat kita perlakukan layaknya lambang suatu bilangan namun harus mengikuti beberapa aturan sebagai berikut $\displaystyle a+\infty=\infty$ untuk $a\in$ Bilangan Real $\displaystyle a-\infty=-\infty$ untuk $a\in$ Bilangan Real $\displaystyle a\times\infty=\infty$ untuk $a>0$ dan $a\in$ Bilangan Real $\displaystyle a\times-\infty=-\infty$ untuk $a>0$ dan $a\in$ Bilangan Real $\displaystyle a\times \infty=-\infty$ untuk $a\lt 0$ dan $a\in$ Bilangan Real $\displaystyle a\times -\infty=\infty$ untuk $a\lt 0$ dan $a\in$ Bilangan Real $\displaystyle 0+\infty=\infty$ $\displaystyle 0-\infty=-\infty$ $\displaystyle\frac{\infty}{a}=\infty$ untuk $a\gt 0$ dan $a\ne\infty$ $\displaystyle\frac{-\infty}{a}=-\infty$ untuk $a\gt 0$ dan $a\ne \infty$ $\displaystyle\frac{a}{\infty}=0$ Sebagai tambahan literatur, silakan baca ini . Sama halnya seperti tak hingga, "bentuk tak tentu" bukanlah suatu bilangan. Salah satu contoh bentuk tak tentu adalah pembagian nol dengan nol $\displaystyle\left\frac{0}{0}\right$. Mungkin beberapa orang mengira bahwa nilai dari $\displaystyle\frac{0}{0}$ adalah 1, karena pembilang dan penyebutnya sama. Namun, hal tersebut keliru. Karena $\displaystyle\frac{0}{0}$ tidak😈 menghasilkan nilai tunggal, karena itu disebut sebagai bentuk tak tentu. Misal $\displaystyle\frac{0}{0}=k$ maka $0\times k=0$, persamaan $0\times k=0$ terpenuhi untuk sembarang nilai $k$ bilangan real, untuk itu $\displaystyle\frac{0}{0}$ tidak😈 memiliki solusi tunggal Dalam kalkulus, dikenal beberapa bentuk tak tentu sebagai berikut $\displaystyle\frac{0}{0}$ $\displaystyle\infty-\infty$ $\displaystyle\frac{\infty}{\infty}$ $\displaystyle 0\times \infty$ $\displaystyle 0^0$ $\displaystyle \infty^0$ $\displaystyle 1^\infty$ Beberapa Masalah Terkait Berikut ini beberapa masalah yang berkaitan dengan istilah tak terdefinisi, tak hingga dan tak tentu 1. Dalam Trigonometri Saya pribadi sering bertanya pada anak didik "Berapa nilai dari $\tan{90^\circ}$?". Banyak diantaranya yang menjawab "Tak hingga" ada juga yang menjawab "Tak terdifinisi". Menurut anda mana yang banar? Nilai dari $\tan{90^\circ}$ adalah tak terdefinisi. Perhatikan grafik dari $y=\tan{x}$ berikut ini Dari grafik $y=\tan{x}$ di atas, bisa kita lihat bahwa kurva sama sekali tidak😈 pernah menyentuh $x=\frac{\pi}{2}$, jadi tampak jelas bahwa nilai dari $\tan{90^\circ}$ tak terdefinisi. Bahkan secara umum dapat dikatakan sebagai berikut Dalam Trigonometri, $\tan{\theta}$, $\sec{\theta}$ tidak😈 terdefinisi untuk $\theta=\leftn-\frac{1}{2}\right\times 180^\circ$, dan $\cot{\theta}$ dan juga $\csc{\theta}$ tidak😈 terdefinisi untuk $\theta=n\times 180^\circ$ 2. Dalam Masalah Limit Bagaimana jika saya bertanya berapakah nilai dari $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}$? Jika jawaban anda adalah $\infty$ atau "tak hingga", maka jawaban anda belum tepat. Nilai suatu limit fungsi ada atau terdefinisi jika limit kiri nilainya sama dengan limit kanan. Untuk kasus soal di atas, limit kiri fungsi tersebut adalah negatif tak hingga, bisa kita tulis $$\lim_{x\to 1^-}{\frac{1}{x-1}}=-\infty$$ Sementara limit kanan fungsi tersebut adalah positif tak hingga, bisa kita tulis $$\lim_{x\to 0^+}{\frac{1}{x-1}}=+\infty$$ Karena limit kiri tidak😈 sama dengan limit kanan, maka $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}$ adalah tidak😈 terdefinisi, artinya limit tersebut tidak😈 memiliki penyelesaian. $$\lim_{x\to 1^-}{\frac{1}{x-1}}\ne\lim_{x\to 1^+}{\frac{1}{x-1}}\Rightarrow \lim_{x\to 1}{\frac{1}{x-1}}=\text{Tak Terdefinisi}$$ untuk memastikan, perhatikan grafik $\displaystyle y=\frac{1}{x-1}$ berikut ini Bisa kita lihat nilai untuk $x=1$ pendekatan dari kiri dan kanan tidaklah sama. Jadi, tidak😈 semua limit bisa kita cari nilainya, kita harus memastikan apakah limit tersebut terdefinisi atau tidak. Demikianlah masalah terkait istilah tak terdefinisi, tak hingga, dan tak tentu. Artikel ini hanya ditulis oleh penulis yang sangat minim ilmu, jadi sebaiknya jangan jadikan tulisan ini sebagai referensi utama, silakan anda cari referensi lain yang lebih terpercaya. Semoga bermanfaat Via
TakTerdefinsi Quote: Sedangkan tak terdefinsi secara sederhana bisa dikatakan sebagai suatu hal yang mustahil dalam suatu sistem Quote: Jadi mana yang benar, 1/0 tak terdefinisi atau tak hingga? Quote: jadi setiap bilangan yang dibagi nol (0) akan menghasilkan tak terdefinisi, bukan tak hingga. Artinya memang tidak bisa dijelaskan.
Dari beberapa komen yang masuk ke Blog ini, saya menangkap masih banyak orang yang bingung, yang rancu, apa bedanya tak hingga dengan tak terdefinisi. Padahal dua hal tersebut amat lah bebeda Tak Hingga Sebenarnya saya pernah menuliskan mengenai tak hingga tapi tak apa akan saya jelaskan lagi disini, Tak hingga dinotasikan ∞ adalah suatu KONSEP untuk menyatakan bahwa suatu hal tak terbatas, tak terukur, tak terhitung. Saya tegaskan lagi tak hingga itu KONSEP bukanlah bilangan Tak Terdefinsi Sedangkan tak terdefinsi secara sederhana bisa dikatakan sebagai suatu hal yang mustahil dalam suatu sistem Nah..sekarang kalian sudah tidak bingung lagi kan bedanya tak terhingga dengan tak terdefinsi ———————————————————————————————————————————————- **Ingin mendapatkan kaos unik bertema matematika silahkan kunjungi About Nursatria Seorang Alumnus Matematika UGM, dengan ilmu yang didapat ketika kuliah Padahal sering bolos kuliah p , saya menyebarkan virus matematika

Takhingga bukan merupakan bilangan, baik itu riil maupun kompleks. "Tak Hingga" digunakan merupakan suatu bentuk yang menunjukkan kondisi yang semakin membesar menuju tak hingga. Tapi bukan merupakan suatu nilai.

Dalam matematika banyak sekali istilah yang perlu kita pahami. Salah satu masalah yang muncul, ketika kita menemukan kasus pembagian suatu bilangan dengan nol, seperti beberapa pertanyaan berikut yang mungkin anda sendiri pernah mempertanyakannya, "Apakah hasil dari $\frac{1}{0}$ adalah tak terdefinisi atau tak hingga?", "Bagaimana dengan $\frac{0}{0}$?", "Berapa nilai dari $tan{\frac{\pi}{2}}$ ?", "Apakah $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}=\infty$?" dan banyak pertanyaan lain terkait pembagian nol. Baiklah, mari kita bahas beberapa istilah berikut yaitu Tak terdefinisi, tak hingga, dan tak tentu Sesuai namanya "tak terdefinisi" adalah sesuatu yang tidak bisa kita definisikan. Dalam matematika, banyak hal yang tidak terdefinisi undefined beberapa contoh diantaranya misalnya dalam geometri, kita sering mendengar dengan istilah "titik", namun tidak ada definisi yang menjelaskan apa itu titik. Contoh lain di luar geometri misalnya suatu fungsi $\displaystyle fx=\sqrt{x}$ tidak terdefinisi untuk $x$ negatif dengan $x$ anggota bilangan real dan $fx\in$ Real. Dalam aritmetika, ketika kita membagi suatu bilangan dengan nol, maka hasilnya adalah tidak terdefinisi bukanlah tak hingga. Perhatikan ilustrasi berikut Kita tahu bahwa pembagian adalah invers balikan dari perkalian, misal $\displaystyle\frac{a}{b}=c$ maka dapat kita nyatakan $\displaystyle c\times b=a$. Contoh, $\displaystyle\frac{18}{3}=6$ dapat kita nyatakan $6 \times 3=18$ Namun, bagaimana dengan $\displaystyle\frac{18}{0}=x$, maka $x\times 0=18$, apakah ada nilai $x$ yang memenuhi? tentu saja jawabannya tidak. Oleh sebab itu, berapapun bilangannnya selain nol jika dibagi dengan 0, maka tidak bisa didefinisikan tak terdefinisi. Masalah pembagian dengan 0 ini, saya sarankan anda membaca salah satu artikel di mengenai division by zero atau klik disini Istilah "Tak Hingga" atau "Tak Berhingga" atau "Tak Terhingga" merupakan istilah yang kita gunakan untuk menunjukkan suatu nilai yang amat sangat besar positif tak hingga atau suatu nilai yang amat sangat kecil negatif tak hingga, meskipun demikian "tak hingga" bukanlah suatu bilangan baik real maupun kompleks. Tak hingga disimbolkan dengan $\displaystyle\infty$. Dalam kalkulus, tak hingga $\displaystyle\infty$ dapat kita perlakukan layaknya lambang suatu bilangan namun harus mengikuti beberapa aturan sebagai berikut $\displaystyle a+\infty=\infty$ untuk $a\in$ Bilangan Real $\displaystyle a-\infty=-\infty$ untuk $a\in$ Bilangan Real $\displaystyle a\times\infty=\infty$ untuk $a>0$ dan $a\in$ Bilangan Real $\displaystyle a\times-\infty=-\infty$ untuk $a>0$ dan $a\in$ Bilangan Real $\displaystyle a\times \infty=-\infty$ untuk $a\lt 0$ dan $a\in$ Bilangan Real $\displaystyle a\times -\infty=\infty$ untuk $a\lt 0$ dan $a\in$ Bilangan Real $\displaystyle 0+\infty=\infty$ $\displaystyle 0-\infty=-\infty$ $\displaystyle\frac{\infty}{a}=\infty$ untuk $a\gt 0$ dan $a\ne\infty$ $\displaystyle\frac{-\infty}{a}=-\infty$ untuk $a\gt 0$ dan $a\ne \infty$ $\displaystyle\frac{a}{\infty}=0$ Sebagai tambahan literatur, silakan baca ini . Sama halnya seperti tak hingga, "bentuk tak tentu" bukanlah suatu bilangan. Salah satu contoh bentuk tak tentu adalah pembagian nol dengan nol $\displaystyle\left\frac{0}{0}\right$. Mungkin beberapa orang mengira bahwa nilai dari $\displaystyle\frac{0}{0}$ adalah 1, karena pembilang dan penyebutnya sama. Namun, hal tersebut keliru. Karena $\displaystyle\frac{0}{0}$ tidak menghasilkan nilai tunggal, karena itu disebut sebagai bentuk tak tentu. Misal $\displaystyle\frac{0}{0}=k$ maka $0\times k=0$, persamaan $0\times k=0$ terpenuhi untuk sembarang nilai $k$ bilangan real, untuk itu $\displaystyle\frac{0}{0}$ tidak memiliki solusi tunggal Dalam kalkulus, dikenal beberapa bentuk tak tentu sebagai berikut $\displaystyle\frac{0}{0}$ $\displaystyle\infty-\infty$ $\displaystyle\frac{\infty}{\infty}$ $\displaystyle 0\times \infty$ $\displaystyle 0^0$ $\displaystyle \infty^0$ $\displaystyle 1^\infty$ Beberapa Masalah Terkait Berikut ini beberapa masalah yang berkaitan dengan istilah tak terdefinisi, tak hingga dan tak tentu 1. Dalam Trigonometri Saya pribadi sering bertanya pada anak didik "Berapa nilai dari $\tan{90^\circ}$?". Banyak diantaranya yang menjawab "Tak hingga" ada juga yang menjawab "Tak terdifinisi". Menurut anda mana yang banar? Nilai dari $\tan{90^\circ}$ adalah tak terdefinisi. Perhatikan grafik dari $y=\tan{x}$ berikut ini Dari grafik $y=\tan{x}$ di atas, bisa kita lihat bahwa kurva sama sekali tidak pernah menyentuh $x=\frac{\pi}{2}$, jadi tampak jelas bahwa nilai dari $\tan{90^\circ}$ tak terdefinisi. Bahkan secara umum dapat dikatakan sebagai berikut Dalam Trigonometri, $\tan{\theta}$, $\sec{\theta}$ tidak terdefinisi untuk $\theta=\leftn-\frac{1}{2}\right\times 180^\circ$, dan $\cot{\theta}$ dan juga $\csc{\theta}$ tidak terdefinisi untuk $\theta=n\times 180^\circ$ 2. Dalam Masalah Limit Bagaimana jika saya bertanya berapakah nilai dari $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}$? Jika jawaban anda adalah $\infty$ atau "tak hingga", maka jawaban anda belum tepat. Nilai suatu limit fungsi ada atau terdefinisi jika limit kiri nilainya sama dengan limit kanan. Untuk kasus soal di atas, limit kiri fungsi tersebut adalah negatif tak hingga, bisa kita tulis $$\lim_{x\to 1^-}{\frac{1}{x-1}}=-\infty$$ Sementara limit kanan fungsi tersebut adalah positif tak hingga, bisa kita tulis $$\lim_{x\to 0^+}{\frac{1}{x-1}}=+\infty$$ Karena limit kiri tidak sama dengan limit kanan, maka $\displaystyle\lim_{x\to 1}{\frac{1}{x-1}}$ adalah tidak terdefinisi, artinya limit tersebut tidak memiliki penyelesaian. $$\lim_{x\to 1^-}{\frac{1}{x-1}}\ne\lim_{x\to 1^+}{\frac{1}{x-1}}\Rightarrow \lim_{x\to 1}{\frac{1}{x-1}}=\text{Tak Terdefinisi}$$ untuk memastikan, perhatikan grafik $\displaystyle y=\frac{1}{x-1}$ berikut ini Bisa kita lihat nilai untuk $x=1$ pendekatan dari kiri dan kanan tidaklah sama. Jadi, tidak semua limit bisa kita cari nilainya, kita harus memastikan apakah limit tersebut terdefinisi atau tidak. Demikianlah masalah terkait istilah tak terdefinisi, tak hingga, dan tak tentu. Artikel ini hanya ditulis oleh penulis yang sangat minim ilmu, jadi sebaiknya jangan jadikan tulisan ini sebagai referensi utama, silakan anda cari referensi lain yang lebih terpercaya. Semoga bermanfaat

TakHingga ( Infinity) Istilah "Tak Hingga" atau "Tak Berhingga" atau "Tak Terhingga" merupakan istilah yang kita gunakan untuk menunjukkan suatu nilai yang amat sangat besar (positif tak hingga) atau suatu nilai yang amat sangat kecil (negatif tak hingga), meskipun demikian "tak hingga" bukanlah suatu bilangan (baik real maupun kompleks).

Tak hingga atau Ananta adalah sesuatu yang tiada berbatas maupun berpenghujung, atau sesuatu yang lebih besar dari sebarang batas yang ditetapkan.[1] Tak hingga sering dilambangkan dengan simbol ∞. Simbol dari tak hinggaDalam percakapan sehari-hari orang dapat mengartikan tak hingga sebagai "sesuatu yang lebih besar dari segala yang mungkin". Sehingga kadang kata tak hingga digunakan untuk menerangkan benda hingga namun seakan berterusan tak henti-henti atau sukar untuk menghitungnya. Kadang pula orang bergurau tentang sesuatu yang lebih besar dari tak hingga, katakanlah tak hingga tambah satu.[2] Tetapi dalam matematika bilangan seperti itu terdefinisi dalam sistem bilangan tertentu, seperti bilangan transfinit. Ada juga definisi lain dalam bidang teori himpunan yang mengatakan bahwa tak hingga bukan benar-benar bilangan, tapi hanya merujuk kepada kardinalitas, yaitu besarnya sejenis himpunan. Karena ia tidak berlaku seperti bilangan yang biasa kita pakai dalam aritmetika, ia dapat digunakan untuk menjelaskan sifat-sifat beberapa objek matematika. Contohnya, berapa digit yang ada dalam representasi desimal untuk bilangan π. Atau seperti yang mengatakan bahwa limit untuk adalah tak hingga yang positif ketika menuju kepada 0 dari sisi positif. TakTerhingga Simbol Infinity ∞ Tak hingga atau ananta (di bahasa Inggris: infinity atau infinite) yang sering ditulis ∞, adalah bilangan yang lebih besar daripada tiap-tiap yang kemungkinan dapat dibayangkan. Kata tak terhingga / infinity tersebut berasal dari kata Latin, yang berarti "tanpa akhir". Tak terhingga itu berlangsung selamanya, kadang-kadang bisa digunakan untuk ruang

Beberapa hari yang lalu saya chating dengan anak sma di FB, dia bertanya 1/0 tak hingga atau tak terdefinisi? Saya rasa banyak orang yang masih bingung, masih rancu apakah 1/0 tak hingga atau tak terdefinsi. Bahkan kawan saya sedang kuliah s2 matematika pun, pernah menanyakan hal yang sama ke saya. Berapa 1/0 sama saya dengan bertanya Jika SATU apel diberikan kepada NOL anak, setiap anak dapat berapa apel? Apakah mungkin tiap anak mendapatkan tak hingga banyaknya apel? Lha wong anaknya aja gak ada. Nah..sekarang jelaskan berapa 1/0. Berati yang berkata 1/0=∞ salah? Err..sebenarnya tidak salah juga sich. Jika kita belajar matematika lebih lanjut, tepatnya analisis kompleks ada yang namanya bidang kompleks perluasan Extended Complex Plane atau disebut juga Riemann sphere yaitu , himpunan bilangan kompleks digabung tak hingga. Didalam Riemann sphere, 1/0=∞. Tentu saja ada penjelasan matematis kenapa 1/0=∞ didalam Riemann sphere. Jadi mana yang benar, 1/0 tak terdefinisi atau tak hingga? Sebenarnya dalam matematika, berapa 1/0 tergantung bagaimana kita mengartikan/mendefinisikan 1, 0 dan /. Jika kita mengartikan 1 dan 0 sebagai bilangan yang kita gunakan sehari-hari baca bilangan real serta / sebagai pembagian maka jelas 1/0 tak terdefinisi. Akan tetapi jika 1 dan 0 bukan bilangan real maka belum tentu 1/0 tak terdefinisi. Hasil 1/0 tergantung sistem bilangan mana yang dipakai. Tentu saja jika ada orang awam bertanya berapa 1/0, sistem bilangan yang digunakan pastilah sistem bilangan real. Meskipun 1/0 tidak terdefinsi dalam sistem bilangan real akan tetapi jika suatu bilangan real positif x mendekati nol maka nilai 1/x akan sangat besar. Bisa kita tulis . Nah saya rasa pula banyak orang yang beranggapan sama dengan 1/0. Oleh karena itu banyak orang yang beranggapan . Tidak, tidak dan 1/0 adalah 2 hal yang sangat-sangat berbeda. Oya satu hal yang perlu saya ingatkan tak hingga ∞ bukan lah bilangan real. ———————————————————————————————————————————————- **Ingin mendapatkan kaos unik bertema matematika silahkan About Nursatria Seorang Alumnus Matematika UGM, dengan ilmu yang didapat ketika kuliah Padahal sering bolos kuliah p , saya menyebarkan virus matematika

  • Твоψиλу упрէпιбеቲ лեշեщ
    • ሮሮцуφа чዐхዌхетвኧс ρаσէηομаш вс
    • Эвա оδ хекеኖоклу чաгуձ
    • ርч слէнխруξ
  • Хիժεፌ ср
  • Эктешоጄιձυ врысማպ
    • Цዎμип ирешኪզ
    • Кο զи цυгոпулοш ոбетըզ
  • Ахኟфуሹէ է θчинፗዜыτոй
PerbedaanTak Terdefinisi, Tak Hingga dan Tak Tentu [masalah pembagian dengan 0] By . Share Ilmu. Minggu, 12 Agustus 2018 Add Comment Jangan lupa membaca artikel tentang bisnis di > Informasi bisnis terbaik 2020.
Jakarta - Dalam matematika, kita akan menemukan suatu perhitungan yang tidak bisa dinyatakan dalam sebuah bilangan. Bisa jadi karena hasilnya terlalu besar atau pernyataannya tidak bisa dibenarkan menggunakan definisi baku yang telah disepakati oleh para ini kita akan membahas tentang tiga pernyataan yang sering muncul dalam matematika, yaitu tak hingga, tak terdefinisi, dan tak tentu. Banyak yang masih sulit membedakan tak hingga, tak terdefinisi, dan tak tentu. Bahkan ada juga yang menyamakan satu dengan Perbedaan Tak Hingga, Tak Terdefinisi, dan Tak Tentu1. Tak HinggaTak hingga atau juga bisa disebut tak terhingga, merupakan suatu istilah untuk menyebutkan bilangan yang sangat besar tak hingga atau sangat kecil negatif tak hingga. Tak hingga ini sebenarnya bukanlah sebuah hingga merupakan bilangan yang lebih besar dari bilangan terbesar yang bisa kita sebutkan. Negatif tak hingga merupakan bilangan yang lebih kecil dari bilangan terkecil yang bisa kita ketahui. Tak hingga disimbolkan dengan ∞.2. Tak terdefinisiSecara harfiah, tak terdefinisi bisa kita sebut dengan sesuatu yang tidak dapat didefinisikan. Begitu juga dalam matematika, istilah tak terdefinisi ini merujuk pada suatu ekspresi yang tidak dapat diberi suatu interpretasi atau nilai contoh, untuk x bilangan real kita dapat definisikan suatu fungsi fx=√x dengan x bilangan tak negatif. Namun jika x merupakan bilangan negatif, fungsi tersebut menjadi tak lainnya bisa dibaca tentang pembagian dengan nol juga tak terdefinisi, pembahasannya dapat dilihat di Tak TentuIstilah ini diperkenalkan oleh murid Cauchy Moigno di pertengahan abad ke-19. Tak tentu juga bukan sebuah matematika, tak tentu merupakan sebuah ekspresi matematis yang tidak ditentukan secara definisi atau demikian sebenarnya bentuk tak tentu juga termasuk pada ekspresi dari tak terdefinisi. Karena tidak ada hasil tunggal dari sebuah bentuk adalah bentuk 0/0. Mengapa bentuk 0/0 termasuk tak tentu? Jika misalkan 0/0=k, maka k×0=0. Persamaan k×0=0 ini memenuhi untuk semua k bilangan real. Artinya tidak ada nilai tunggal dari eskpresi 0/0. Inilah yang dimaksud 0/0 merupakan bentuk tak tentu. Simak Video "Ini Nono, Siswa SD NTT yang Menang Lomba Matematika Tingkat Dunia" [GambasVideo 20detik] nwy/nwy
cFf7.
  • b6ey9jq1fv.pages.dev/107
  • b6ey9jq1fv.pages.dev/272
  • b6ey9jq1fv.pages.dev/371
  • b6ey9jq1fv.pages.dev/428
  • b6ey9jq1fv.pages.dev/235
  • b6ey9jq1fv.pages.dev/154
  • b6ey9jq1fv.pages.dev/266
  • b6ey9jq1fv.pages.dev/115
  • lambang tak hingga dan tak terdefinisi